ON ONE ZALCMAN PROBLEM FOR THE MEAN VALUE OPERATOR

نویسندگان

چکیده

Let \(\mathcal{D}'(\mathbb{R}^n)\) and \(\mathcal{E}'(\mathbb{R}^n)\) be the spaces of distributions compactly supported on \(\mathbb{R}^n\), \(n\geq 2\) respectively, let \(\mathcal{E}'_{\natural}(\mathbb{R}^n)\) space all radial (invariant under rotations \(mathbb{R}^n\)) in \(\mathcal{E}'(\mathbb{R}^n)\), let\(\widetilde{T}\) spherical transform (Fourier–Bessel transform) a distribution \(T\in\mathcal{E}'_{\natural}(\mathbb{R}^n)\), \(\mathcal{Z}_{+}(\widetilde{T})\) set zeros an even entire function \(\widetilde{T}\) lying half-plane \(\mathrm{Re} \, z\geq 0\) not belonging to negative part imaginary axis. \(\sigma_{r}\) surface delta concentrated sphere \(S_r=\{x\in\mathbb{R}^n: |x|=r\}\). The problem L. Zalcman reconstructing \(f\in \mathcal{D}'(\mathbb{R}^n)\) from known convolutions \(f\ast \sigma_{r_1}\) \sigma_{r_2}\) is studied. This correctly posed only condition \(r_1/r_2\notin M_n\), where \(M_n\) possible ratios positive Bessel \(J_{n/2-1}\). paper shows that if then arbitrary can expanded into unconditionally convergent series$$f=\sum\limits_{\lambda\in\mathcal{Z}_{+}(\widetilde{\Omega}_{r_1})}\,\,\, \sum\limits_{\mu\in\mathcal{Z}_+(\widetilde{\Omega}_{r_2})}\frac{4\lambda\mu}{(\lambda^2-\mu^2) \widetilde{\Omega}_{r_1}^{\,\,\,\displaystyle{'}}(\lambda)\widetilde{\Omega}_{r_2}^{\,\,\,\displaystyle{'}}(\mu)}\Big(P_{r_2} (\Delta) \big((f\ast\sigma_{r_2})\ast \Omega_{r_1}^{\lambda}\big)-P_{r_1} \big((f\ast\sigma_{r_1})\ast \Omega_{r_2}^{\mu}\big)\Big)$$in \(\mathcal{D}'(\mathbb{R}^n)\), \(\Delta\) Laplace operator \(P_r\) explicitly given polynomial degree \([(n+5)/4]\), \(\Omega_{r}\) \(\Omega_{r}^{\lambda}\) are constructed ball \(|x|\leq r\). proof uses methods harmonic analysis, as well theory special functions. By similar technique, it obtain inversion formulas for other convolution operators with distributions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The spherical mean value operator with centers on a sphere

Let B represent the ball of radius ρ in Rn and S its boundary; consider the map M : C∞ 0 (B) → C∞(S × [0,∞)) where (Mf)(p, r) = 1 ωn−1 ∫ |θ|=1 f(p+ rθ) dθ represents the mean value of f on a sphere of radius r centered at p. We summarize and discuss the results concerning the injectivity of M, the characterization of the range of M, and the inversion of M. There is a close connection between me...

متن کامل

Dual Mean Value Problem for Complex Polynomials

We consider an extremal problem for polynomials, which is dual to the well-known Smale mean value problem. We give a rough estimate depending only on the degree.

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

Mean Value Problems of Flett Type for a Volterra Operator

In this note we give a generalization of a mean value problem which can be viewed as a problem related to Volterra operators. This problem can be seen as a generalization of a result concerning the zeroes of a Volterra operator in the Banach space of continuous functions with null integral on a compact interval.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ural mathematical journal

سال: 2023

ISSN: ['2414-3952']

DOI: https://doi.org/10.15826/umj.2023.1.017